Package: PEcAnAssimSequential 1.8.0.9000

Mike Dietze

PEcAnAssimSequential: PEcAn Functions Used for Ecological Forecasts and Reanalysis

The Predictive Ecosystem Carbon Analyzer (PEcAn) is a scientific workflow management tool that is designed to simplify the management of model parameterization, execution, and analysis. The goal of PECAn is to streamline the interaction between data and models, and to improve the efficacy of scientific investigation.

Authors:Mike Dietze

PEcAnAssimSequential_1.8.0.9000.tar.gz
PEcAnAssimSequential_1.8.0.9000.zip(r-4.5)PEcAnAssimSequential_1.8.0.9000.zip(r-4.4)PEcAnAssimSequential_1.8.0.9000.zip(r-4.3)
PEcAnAssimSequential_1.8.0.9000.tgz(r-4.4-any)PEcAnAssimSequential_1.8.0.9000.tgz(r-4.3-any)
PEcAnAssimSequential_1.8.0.9000.tar.gz(r-4.5-noble)PEcAnAssimSequential_1.8.0.9000.tar.gz(r-4.4-noble)
PEcAnAssimSequential_1.8.0.9000.tgz(r-4.4-emscripten)PEcAnAssimSequential_1.8.0.9000.tgz(r-4.3-emscripten)
PEcAnAssimSequential.pdf |PEcAnAssimSequential.html
PEcAnAssimSequential/json (API)

# Install 'PEcAnAssimSequential' in R:
install.packages('PEcAnAssimSequential', repos = c('https://pecanproject.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/pecanproject/pecan/issues

Uses libs:
  • jags– Just Another Gibbs Sampler for Bayesian MCMC
  • c++– GNU Standard C++ Library v3

On CRAN:

bayesiancyberinfrastructuredata-assimilationdata-scienceecosystem-modelecosystem-scienceforecastingmeta-analysisnational-science-foundationpecanplants

8.08 score 203 stars 35 scripts 59 exports 235 dependencies

Last updated 1 days agofrom:cab30e89b4. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-winNOTENov 20 2024
R-4.5-linuxNOTENov 20 2024
R-4.4-winNOTENov 20 2024
R-4.4-macNOTENov 20 2024
R-4.3-winNOTENov 20 2024
R-4.3-macNOTENov 20 2024

Exports:adj.ensaggregatealltocsalrAnalysis.sdaassessParamsblock_matrixconj_wt_wishart_samplerConstruct_Hconstruct_nimble_HConstruct.H.multisiteConstruct.RContruct.PfCreate_Site_PFT_CSVdwtmnormEnKFEnKF.MultiSiteGEFGEF.MultiSiteGEF.MultiSite.Nimbleget_ensemble_weightsGrabFillMatrixhop_testinteractive.plotting.sdainv.alrload_data_paleon_sdaLocal.supportmatrix_networkmetSplitobs_timestep2timepointObs.data.prepare.MultiSiteoutlier.detector.boxplotpiecew.poly.localpost.analysis.ggplotpost.analysis.ggplot.violinpost.analysis.multisite.ggplotpostana.bias.plotting.sdapostana.bias.plotting.sda.corrpostana.timeser.plotting.sdaPrep_OBS_SDARemote_Sync_launcherrescaling_stateVarsrwtmnormsample_metsampler_toggleSDA_controlSDA_downscale_hrlySDA_OBS_AssemblerSDA_remote_launcherSDA_timeseries_plotsda_weights_sitesda.enkfsda.enkf.multisitesda.enkf.originalsimple.localtobit_model_censoredtobit.modeltobit2space.modely_star_create

Dependencies:abindadmiscamerifluxrarrowaskpassassertthatbase64encbigleafbitbit64bitopsblobbootbslibcacachemcallrCDMcellrangerclassclassIntclicliprclueclustercodacodetoolscolorspacecpp11crayoncrosstalkcrulcurldata.tableDBIdbplyrdeldirdendextendDEoptimRdigestdownloaderdplRdplyrduckdbduckdbfse1071eggevaluatefansifarverfastmapfauxpasfBasicsfontawesomeforeachfsfurrrfuturegclusgenericsgeonamesgetoptggplot2ggrepelglobalsgluegridExtragssgtableHDIntervalheatmaplyhighrhmshtmltoolshtmlwidgetshttpcodehttrigraphisobanditeratorsjquerylibjsonliteKernSmoothkknnknitrlabelinglaterlatticelazyevallifecyclelistenvlubridatemagrittrMASSMatrixMatrixModelsmatrixStatsmcmcMCMCpackmemoisemgcvmimemlegpmodeestmunsellmvtnormncdf4neonstoreneonUtilitiesnimblenlmenneonumDerivopenssloptparseparallellypbapplypbvPEcAn.benchmarkPEcAn.data.atmospherePEcAn.data.landPEcAn.DBPEcAn.emulatorPEcAn.loggerPEcAn.MAPEcAn.priorsPEcAn.remotePEcAn.settingsPEcAn.uncertaintyPEcAn.utilsPEcAn.visualizationPEcAn.workflowpermutepillarpkgconfigplotlyplyrpngpolyclippolycorpracmaprettyunitsprocessxprogresspromisesproxypspurrrqapquantregR.methodsS3R.ooR.utilsR6randtoolboxrappdirsrasterRColorBrewerRcppRcppArmadilloRCurlreadrreadxlREddyProcregistryrematchreshape2rjagsrjsonrlangrmarkdownrmutilrngWELLrobustbaserpartrunjagss2sassscalesseriationsfsignalSimilarityMeasuressirtsolartimespSparseMspatialspatstat.dataspatstat.geomspatstat.univarspatstat.utilsstablestablediststatipstorrstringistringrsuntoolssurvivalswfscMiscsysTAMterrathortibbletidyrtidyselecttimechangetimeDatetimeSeriestinytextraitstriebeardtruncnormTSPtzdbunitsurltoolsutf8vctrsveganviridisviridisLitevroomwebshotwhiskerwithrwkxfunXMLxtsyamlzipzoo

Readme and manuals

Help Manual

Help pageTopics
adj.ensadj.ens
Aggregation Functionaggregate
alltocsalltocs
Additive Log Ratio transformalr
analysis_sda_blockanalysis_sda_block
Analysis.sdaAnalysis.sda
assess.paramsassess.params assessParams
block_matrixblock_matrix
block.2.vectorblock.2.vector
build_Xbuild_X
build.block.xybuild.block.xy
Weighted conjugate wishartconj_wt_wishart_sampler
Construc_HConstruct_H Construc_H
construct_nimble_Hconstruct_nimble_H
Construct.H.multisiteConstruct.H.multisite
Construct.RConstruct.R
Contruct.PfContruct.Pf
Title Identify pft for each site of a multi-site settings using NLCD and Eco-regionCreate_Site_PFT_CSV
weighted multivariate normal densitydwtmnorm
EnKFEnKF
EnKF.MultiSiteEnKF.MultiSite
GEFGEF GEF.MultiSite
multisite TWEnFGEF.MultiSite.Nimble
get_ensemble_weightsget_ensemble_weights
GrabFillMatrixGrabFillMatrix
hop_testhop_test
Internal functions for plotting SDA outputs. Interactive, post analysis time-series and bias plots in base plotting system and ggplotinteractive.plotting.sda post.analysis.ggplot post.analysis.ggplot.violin post.analysis.multisite.ggplot postana.bias.plotting.sda postana.bias.plotting.sda.corr postana.timeser.plotting.sda SDA_timeseries_plot
inverse of ALR transforminv.alr
load_data_paleon_sdaload_data_paleon_sda
load_nimbleload_nimble y_star_create
Local.supportLocal.support
matrix_networkmatrix_network
MCMC_block_functionMCMC_block_function
MCMC_functionMCMC_function
MCMC_InitMCMC_Init
metSplitmetSplit
convert from timestep to actual time points. supports year, month, week, and day as time unit.obs_timestep2timepoint
Obs.data.prepare.MultiSiteObs.data.prepare.MultiSite
outlier.detector.boxplotoutlier.detector.boxplot
piecew.poly.localpiecew.poly.local
SDA observation preparation function for LAI and AGBPrep_OBS_SDA
Remote_Sync_launcherRemote_Sync_launcher
rescaling_stateVarsrescaling_stateVars
random weighted multivariate normalrwtmnorm
Sample meteorological ensemblessample_met
sample parameterssample.parameters
sampler togglingsampler_toggle
SDA_controlSDA_control
SDA Downscale FunctionSDA_downscale
SDA Downscale Function for Hourly DataSDA_downscale_hrly
Calculate Metrics for Downscaling ResultsSDA_downscale_metrics
Preprocess Data for DownscalingSDA_downscale_preprocess
sda_matchparamsda_matchparam
Assembler for preparing obs.mean and obs.cov for the SDA workflowSDA_OBS_Assembler
SDA_remote_launcherSDA_remote_launcher
Calculate ensemble weights for each site at time t.sda_weights_site
State Variable Data Assimilation: Ensemble Kalman Filter and Generalized ensemble filtersda.enkf
State Variable Data Assimilation: Ensemble Kalman Filter and Generalized ensemble filtersda.enkf.multisite
State Variable Data Assimilation: Ensemble Kalman Filtersda.enkf.original
simple.localsimple.local
tobit_model_censoredtobit_model_censored
TWEnFtobit.model
Fit tobit prior to ensemble memberstobit2space.model
update_qupdate_q